

EPFL

MICRO-517

Optical Design with ZEMAX OpticStudio

Lecture 2

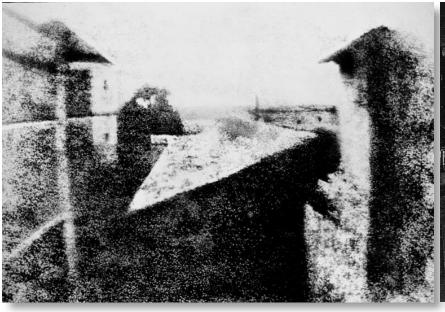
3.10.2022

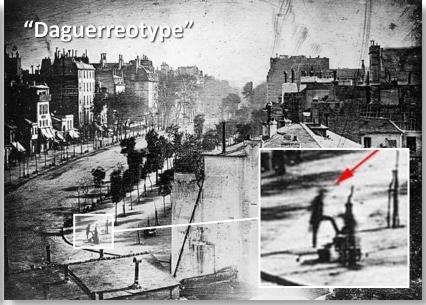
Ye Pu

Sciences et techniques de l'ingénieur École Polytechnique Fédérale de Lausanne CH-1015 Lausanne

Outline

Theory


- Brief history of photographic lens design
- Paraxial theory of lenses


ZEMAX Practice

First lens design

L! L! L! ST!

History of Photography

First known landscape photo (enhenced)

Joseph Nicéphore Niépce, c. 1826-1827 Material: asphalt film on pewter plate Exposure: 8 hours (camera obscura) Source: College of Liberal Arts, University of Minnesota

First known photo containing a human

Louis Daguerre, 1838

Material: polished silver surface

Exposure: 10 minutes

Source: Wikipedia.org

First successful portrait photo

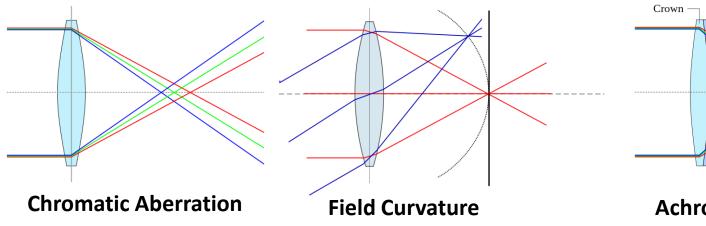
Robert Cornelius, 1839

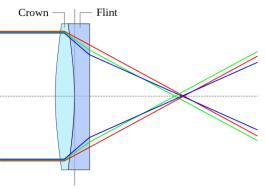
Material: silver and bromine

Exposure: 1 minutes

Source: PetaPixel.com

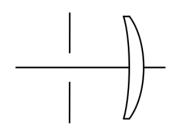
History and Evolution of Lens Forms


Lens: from Latin lens ("lentil"), a curved transparent material that refracts light

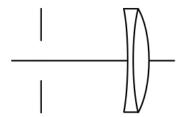

- First reference to a burning-glass: 424 BC
- First mentioning of magnifying effect: 1st century
- Spectacles: 13th century
- Microscopes and telescopes: 16th century

- Early photography: single convex lens
- Severe chromatic aberration and field curvature among other aberrations
- Achromatic doublet lens: Chester Moore Hall 1754 (for telescope)

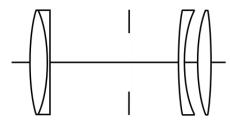
Achromatic Doublet Lens


MICRO-517

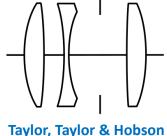
History and Evolution of Lens Forms


Early Work

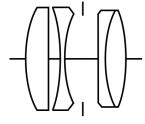
Cooke Triplet



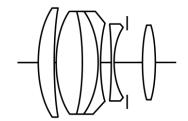
Chevalier Achromat Landscape, 1839

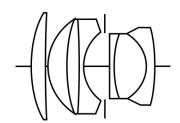


Petzval Portrait, 1840

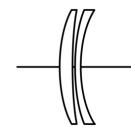

First lens design by ray tracing F/3.6

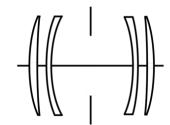
Corrects chromatic and

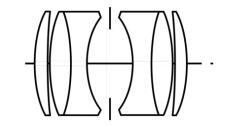

spherical aberration,

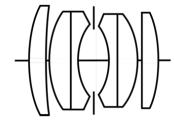


Cooke Triplet 1839


Zeiss Tessar 1902




coma, and astigmatism. Standard in low-end cameras today

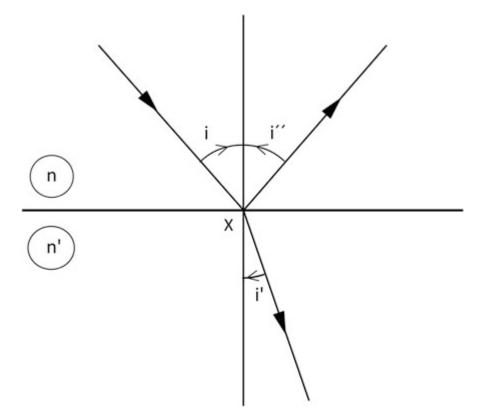


Gauss Objective 1817 Clark Double Gauss f/8 1817

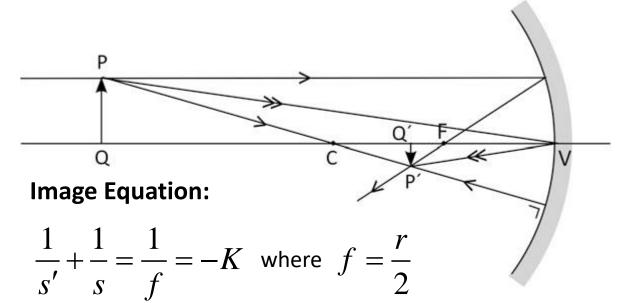
Taylor, Taylor & Hobson Series 0 (Opic) f/2 1920

Zeiss Plannar f/4.5 1896

Most intensively studied lens formula. Near perfect performance. Dominating lens design used today


Design: Art of Balance and Compromise

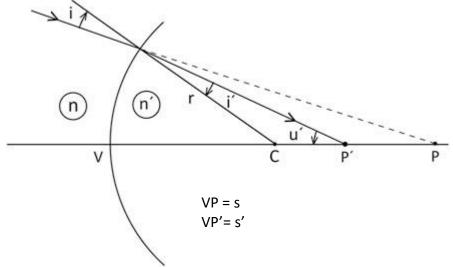
Paraxial Optics: Reflection


Reflection and Refraction at an Interface

Paraxial Approximation: n'i' = ni

Spherical Reflective Surface (Concave Mirror)

$$VQ=s$$
 Object distance $VF=f$ Focal length $VQ'=s'$ Image distance $VC=r$ Curvature radius


Magnification:
$$M \equiv \frac{P'Q'}{PQ} = -\frac{s'}{s}$$
 Power: $K \equiv -\frac{1}{f}$

Power:
$$K \equiv -\frac{1}{f}$$

Paraxial Optics: Refraction

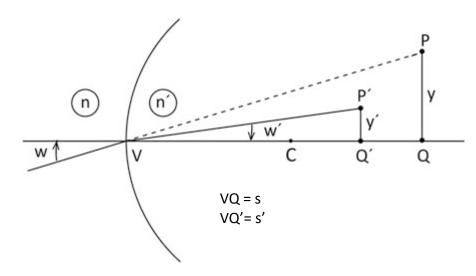
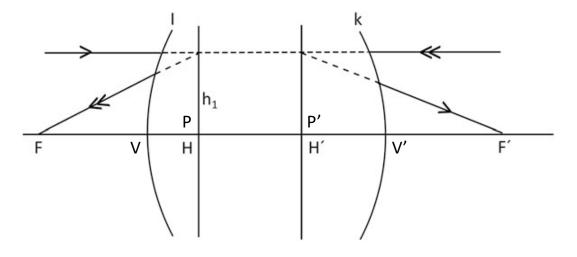
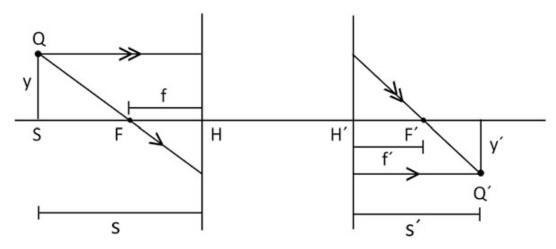

Spherical Reflective Surface

Image Equation:

$$\frac{n'}{s'} - \frac{n}{s} = \frac{1}{f} = K \text{ where } f = \frac{r}{n' - n}$$
Power: $K \equiv \frac{1}{f} = \frac{n' - n}{r}$

Power:
$$K \equiv \frac{1}{f} = \frac{n'-n}{r}$$

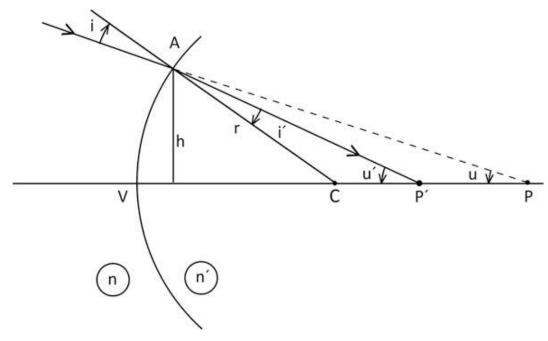

Magnification:


$$M \equiv \frac{y'}{y} = \frac{ns'}{n's}$$
 since $n'w' = nw$

Abbe's Invariant:
$$n'\left(\frac{1}{s'} - \frac{1}{r}\right) = n\left(\frac{1}{s} - \frac{1}{r}\right)$$

LILL STI MICRO-517

Paraxial Systems: Cardinal Points



Cardinal Points and Principal Planes

- Planes that have a magnification M = +1 are called the principal plane (H and H')
- Intersection points between the principal planes and the optical axis are principal points
- F, F', V, V', P, P' are called cardinal points
- Focal length is measured from the principal planes, i.e. HF = f, H'F' = f'
- Imaging process can be considered based on the principal planes and the cardinal points without surface detail

LIL STI MICRO-517

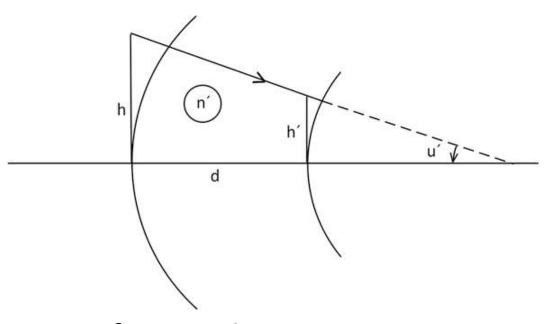
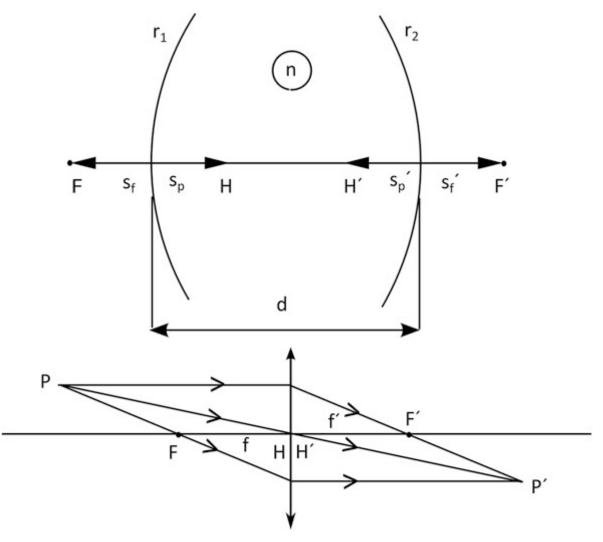

Paraxial Ray Tracing

Image Equation:

$$i = u + h/r$$
 $i' = u' + h/r$ $n'i' = ni$

$$K = \frac{n' - n}{r}$$


Transfer Equation:

$$h' = h - u'd$$

$$h_{i+1} = h_i - u_{i+1}d_i$$

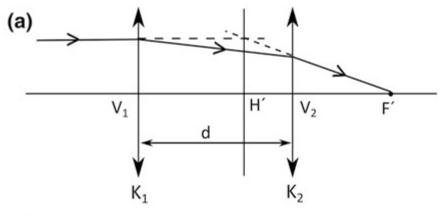
LILL LILL STI

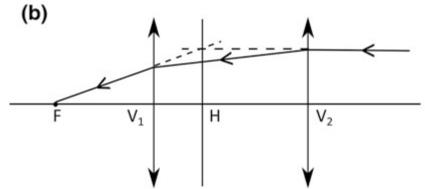
Single Lens

$$K_1 = (n-1)/r_1$$
 $K_2 = (1-n)/r_2$
 $K = K_1 + K_2 - dK_1K_2/n$
 $S_p = -dK_2/nK$ $S_p' = -dK_1/nK$

Lens Maker's Formula:

$$K = \frac{1}{f} = (n-1) \left[\frac{1}{r_1} - \frac{1}{r_2} + \frac{(n-1)d}{nr_1r_2} \right]$$


Thin Lens:


$$d \to 0$$

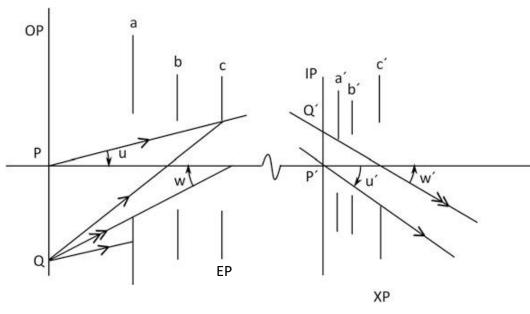
$$K = \frac{1}{f} = (n-1)\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Paraxial Ray Tracing in Thin Lenses

Location of Principal Plane:

$$K = K_1 + K_2 - dK_1 K_2 / n$$

$$V_1 H = K_2 d / K$$


$$V_2 H' = -K_1 d / K$$

Power of a System of Thin Lenses:

$$h_1 K = \sum_{i=1}^k h_i K_i$$

Apertures, Stops, and Pupils

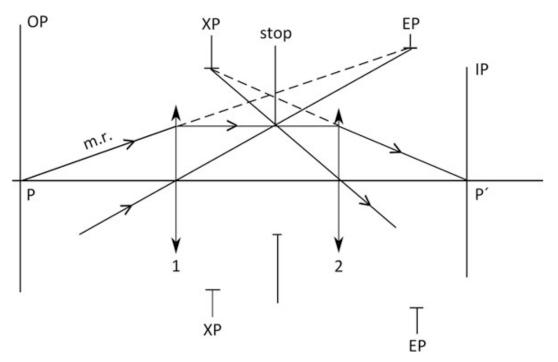
EP: Entrance pupil

XP: Exit pupil

Image a: field stop

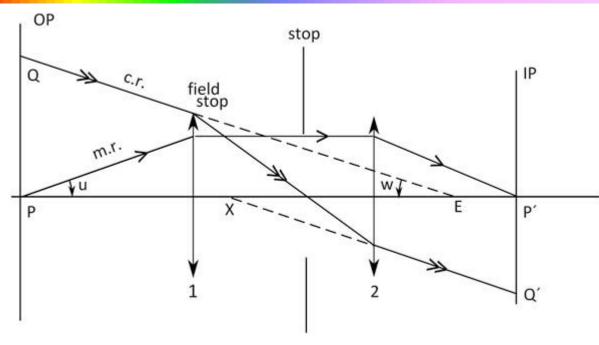
Aperture Stop of a Lens System

- A lens system may consist of many lenses
- Each lens may have different diameter
- May also possess an iris inside the system
- The component that limit the light rays is an aperture stop
- A ray from an on-axis point passing the edge of the aperture stop is the marginal ray
- Can be located anywhere in the system
- Determining aperture stop
 - Find images of all lens edges and diaphragms in the object space
 - The ray-limiting one is called the entrance pupil (object-side image of the aperture stop)
 - The image-side image of the aperture stop is the exit pupil



Apertures, Stops, and Pupils

Aperture Stop


Entrance and Exit Pupil

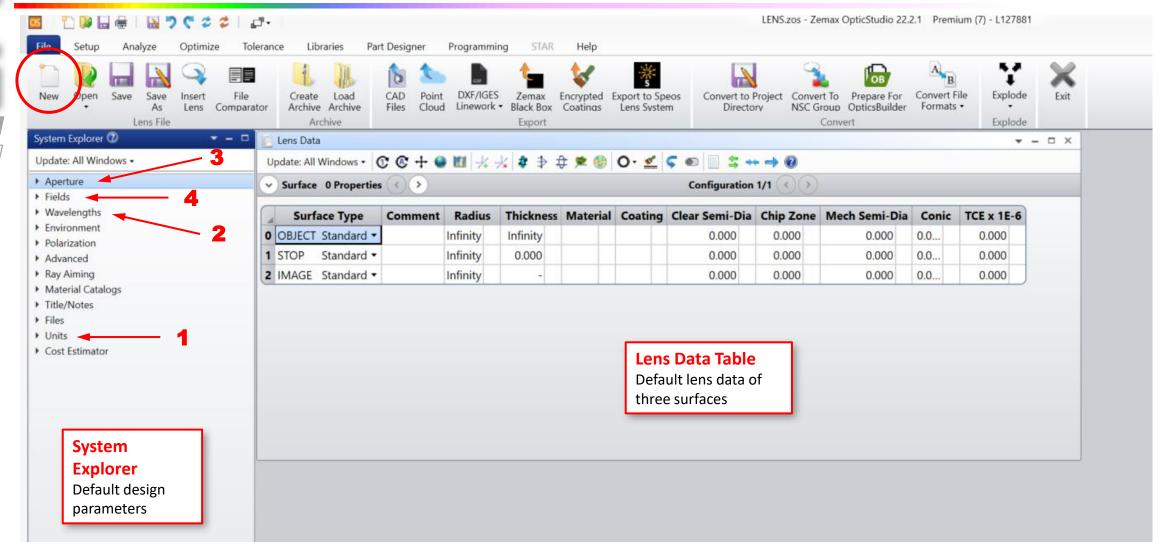
LILL LILL STI MICRO-517

Apertures, Stops, and Pupils

Field Stop

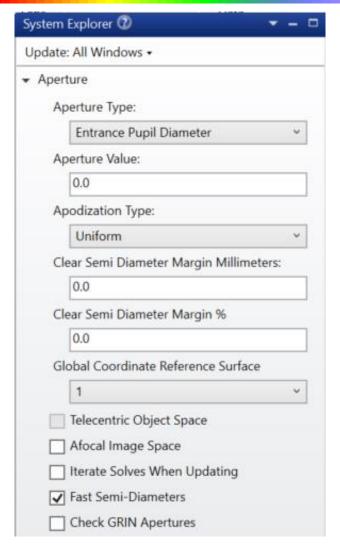
- The edge that limits the angle of the chief ray passing the center of the aperture stop is the field stop
- More light energy is blocked by field stop as the angle of the chief ray increases, causing vignetting
- The angle of the chief ray with the axis is called the field angle
- Placing entrance pupil on the object plane removes vignetting (as in a telescope or a microscope)

ZIEIVIAX OpticStudio

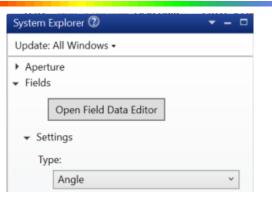


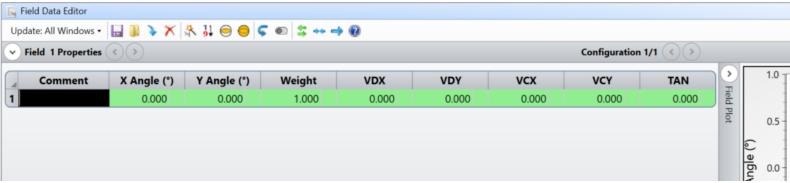
The First Lens Design Project

Lens Design Specifications


Specification	Constraint				
Focal Length	100 mm				
Semi-Field of View (SFOV)	5 degrees				
Wavelength	632.8 nm (HeNe)				
Center Thickness of singlet	Between 2 mm and 12 mm				
Edge Thickness of singlet	Larger than 2 mm				
Optimization criteria	RMS Spot Size averaged over FOV				
Object location	At infinity				

Initiating a Design


Defining the Aperture



Aperture type	Description		
Entrance Pupil Diameter	Diameter of the pupil as seen from object space		
Image Space F/#	Infinite conjugate paraxial F/# in image space		
Object Space Numerical Aperture	Numerical aperture (NA = n sin θ m) of the marginal ray in object space.		
Float By Stop Size	Defined by the clear semi-diameter or semi-diameter of the stop surface.		
Paraxial Working F/#	Paraxial F/# in image space for the defined conjugates.		
Object Cone Angle	Half angle in degrees of the marginal ray in object space, which may exceed 90 degrees. May not be used if the entrance pupil is virtual and the distance from the object to the entrance pupil is negative. The default "Uniform" apodization of rays in the pupil is uniform in angle space, while "Cosine Cubed" apodization of rays is uniform in solid angle.		

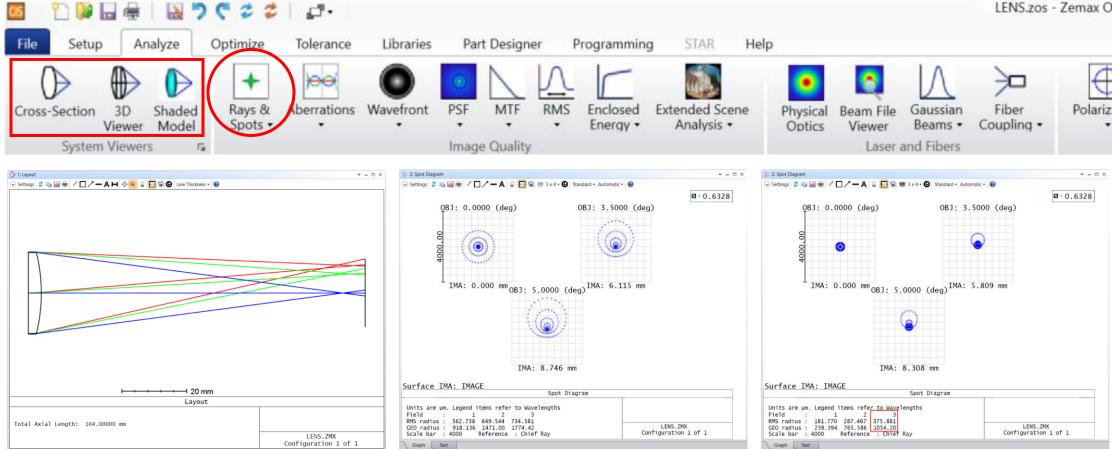
LILL STI

Defining the Field

Field Type	Description
	Angle that the chief ray (the ray passing the center of the entrance pupil) makes with respect
Angle	to the object space Z axis. Positive field angles $ ightarrow$ positive ray slope $ ightarrow$ negative object
	coordinates. Most useful when at an infinite conjugates.
Object Height	The X and Y heights on the object (OBJ) surface. Cannot be used when at infinite conjugates.
Daravial Imaga Haight	Paraxial height on the image (IMA) surface. Useful for fixed frame-size designs (e.g., a camera
Paraxial Image Height	system). Only works well with systems that are well described by paraxial optics.
	Real image height on the image surface. Also useful for fixed-frame designs but use actual ray
Real Image Height	tracing rather than paraxial calculation. Slightly slower due to an iterative approach used to
	determine the coordinates of the chief ray on the IMA plane.
Theodolite Angle	Azimuth θ and elevation ϕ polar angles in degrees. These angles are commonly used in
Theodolite Angle	surveying and astronomy.

LI. LI. LII. STI

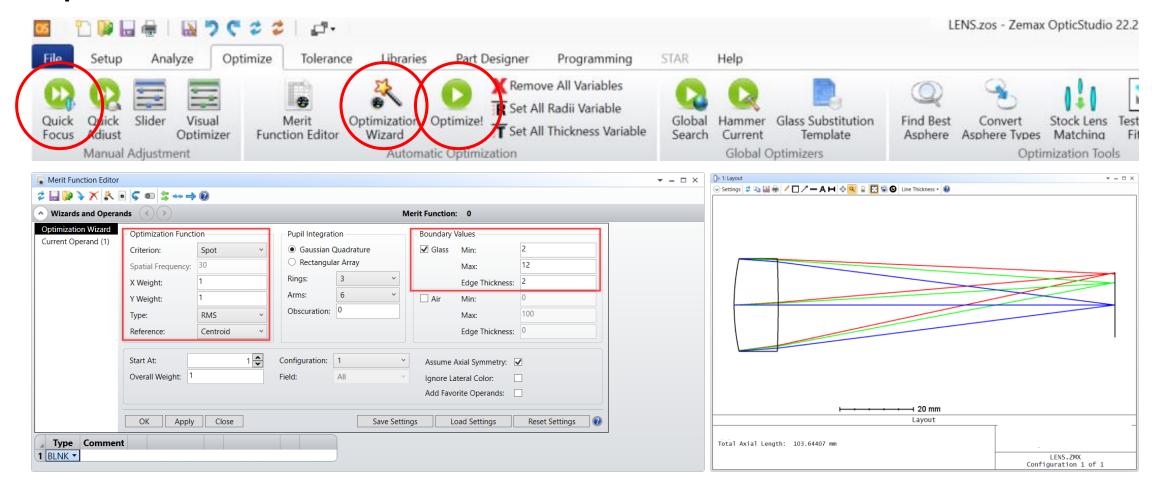
Inserting Surfaces with Lens Parameters


	Lens Data X											
Update: All Windows ▼ 💽 🚱 🕂 🔮 💹 🙏 🛊 🗦 🛱 🔘 ▼ 🚅 🦃 🔘 📗 ≒ 🕶 📦 🔞												
Surface 2 Properties ()												
	Surf	ace Type	Comment	Radius	Thickness	Material	Coating	Clear Semi-Dia	Chip Zone	Mech Semi-Dia	Conic	TCE x 1E-6
0	OBJECT	Standard ▼		Infinity	Infinity			Infinity	0.000	Infinity	0.000	0.000
1	STOP	Standard ▼		Infinity	0.000			12.500	0.000	12.500	0.000	0.000
2		Standard ▼		Infinity	0.000			12.500	0.000	12.500	0.000	0.000
3	IMAGE	Standard ▼		Infinity	-			12.500	0.000	12.500	0.000	0.000

Column	Description			
Surface Type	Type of surface (Standard, Even Asphere, Diffraction Grating,)			
Comment	Optional field for surface-specific comments			
Radius	Surface radius of curvature in lens units			
Thickness	Distance separating the current surface and the next			
Material	Type of material (glass, air,) separating the current surface and the next			
Semi-Diameter	Half-size of the surface			

A1 An

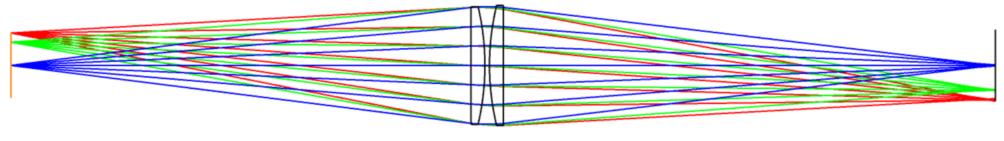
Analyzing


Analyze Menu

LIL LIL LIL STI

Optimizing

Optimize Menu



Homework

Objective

- Familiarize yourself with basic ZEMAX ray tracing
- Understand basic relationship between lens shapes and aberrations
- 1. Analyze the compound lens consisting a pair of identical planoconvex lenses of material N-BK7, a surface curvature radius of 55 mm and a center thickness 3 mm, with their spherical side facing each other and 1 mm between the two surfaces. The object is located 100 mm in front of the first surface of the compound lens with heights 0, 5, 7 mm. You can use Quick Focus tool to locate the image plane. Report the 2D cross-section of the ray tracing result, the spot diagram, and the cardinal points of the compound lens.
- 2. Flip the two lenses (now with the flat surface facing each other with 1 mm distance in between) and perform the above analysis. Compare the results in terms of the spot diagram.
- 3. Analyze a single biconvex lens with identical 55 mm curvature radii of the two spherical surfaces, a center thickness of 6 mm, and the same field settings. Compare the results in terms of the spot diagram.

You should submit the ZEMAX design files (.zos) and a PDF (preferred) or Word report containing the requested figures and cardinal point data.

